Forage fish dispersal, concentration, and stranding on ridge-and-slough habitats

Simeon Yurek¹, Donald L. DeAngelis^{1,2}, Joel C. Trexler³, Laurel G. Larsen⁴

 ¹University of Miami, Miami, FL
²Southeast Ecological Science Center, USGS, Gainesville, FL
³Florida International University, Miami, FL
⁴University of California, Berkeley, Berkeley, CA

Primary research questions

How is energy transmitted up the food chain from the aquatic system to top predators?

How do seasonal wetland dynamics, created by water flows interacting with topography, mediate this energy transfer?

Expanding and contracting wetlands

courtesy of Everglades Foundation

Wasp-waist food web

after Bakun (2006)

Spatiotemporal connectivity is critical

Modeling Ecohydrology

Develop a numerical computer model that simulates:

- Energy transmission in an Everglades fish food web
- Biomass growth and dispersal of forage fish with different life history traits

On landscapes with:

- Seasonally dynamic hydrology
- Structurally variable ridge-and-slough topography

GEFISH Greater Everglades Fish Model

Yurek et al., 2013

GEFISH Greater Everglades Fish Model

Primary Study Units (PSUs)

Intact and degraded habitat

Fish functional groups

Fish 2

Gambusia holbrooki Eastern mosquitofish

Jordanella floridae Flagfish

Fish 3

Lucania goodei Bluefin killifish

Fish movement

- Changing water levels drive fish movement
- Increased movement in shallower depths

Fish stranding

- Water levels fall, marsh dries
- Fish trapped and don't move

Modeling movement:

Modeling movement:

Fish species:

Gambusia holbrooki Eastern mosquitofish

Lucania goodei Bluefin killifish

Model output: Stranded biomass

Model output: Stranded biomass

Fish Stranding

Directional Connectivity Index (DCI)

(Larsen et al., 2012)

Structural connectivity → Fish movement → Biomass availability

Very high DCI = Low stranding

Mixed DCI = Mixed stranding

- Spatial modeling provides insights that are not evident in hydrology and empirical data alone
- Fish can be modeled much like hydrology, but have biological behaviors
- Fish stranding is sensitive to water depths and connectivity
- <u>Topographic complexity</u> and <u>diversity of connectivity</u> are required for continuous fish stranding

Thank you!

U.S. Army Corps of Engineers U.S. Geological Survey National Oceanic and Atmospheric Administration National Park Service Florida International University University of Miami

<u>Collaborators</u> Don DeAngelis Joel Trexler Laurel Larsen Pam Schofield

UNIVERSITY OF MIAMI

Wading bird prey availability

FIG. 6. Giving-up density for eight bird species preying upon fish increased with increasing water depth treatments of 10 cm, 19 cm, and 28 cm.